WAVE RIDER CONFIGURATIONS BEHIND PARABOLIC SHOCK WAVES

V. I. Voronin, V. F., Zakharchenko, and A. I. Shvets UDC 533.6.011.55

Exact solutions exist to inverse gas-dynamic problems involving supersonic flows and
planar shock waves [1-3], and there are also solutions for conical shock waves [4-8]. The
bodies may be better than those equivalent in volume and length constructed from the stream
lines behind the planar shock waves not only as regards load-carrying characteristics (for A
wings) but also as regards resistance (in the case of stars). Naturally, a further develop-
ment is to derive optimal bodies based on curvilinear shock waves. A method is proposed for
extending gas-dynamic design principles by means of surfaces with variable curvature [9] and
bodies of regenerative shape [10]. A comparison has been made between wave riders having A-
shaped cross sections and other bearing bodies formed by flow surfaces behind planar or
axisymmetric shock waves (11].

Here we present numerical solutions for the flow around wave riders based on parabolic
shock waves.

Calculation Method. Let the shape be known for an arbitrary attached shock wave (SW),
where it is necessary to calculate the flow parameters behind it. We write the basic planar-
flow equations in a rectangular coordinate system (the x axis coincides with the velocity
vector for the unperturbed flow, and the y axis is perpendicular to the x axis and directed
downwards) :
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Here v,, and vy, are the components of the velocity vector along the x and y axes, p; pres-
sure, p, density, x the specific-heat ratio, and Vs, Pxy Po the unperturbed-flow param-
eters.

We supplement (1) with a condition for constant entropy along the stream lines:
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We supplement (1) and (2) with
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where 9g,/0l (m =1, ..., 4, g, = vy, £ = Vy, & = P, € = p) are derivatives along a certain direc-
tion at the SW, while cos(f, x) and cos{f, y) are the direction cosines for that direction.

We thus have a closed system containing eight linear algebraic equations in (1)-(3) in
terms of eight unknown first derivatives for the flow parameters at the SW dg,/dz, dgn/dy.

We determine the unknown parameters behind the SW numerically from the values at it. We
establish the range in which the body, at present unknown, affects the induced SW. We take
this range as one and divide it up into N small equal parts Ax, (Fig. 1: 1 SW, 2 charac-
teristic, 3 stream line j = const, 4 i = const, 5 bottom section plane). The coordinates of
the working points are x;; and y;; (the points where the flow parameters are calculated), in

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp.
66-70, May-June, 1988. Original article submitted February 3, 1987.

374 0021-8944/88/2903-0374%$12.50 © 1988 Plenum Publishing Corporation



7
——
I
—al
— ~
|
! {
2 |
Yy 3 & {
Ls !
|
Fig. 1

b

Fig. 2 Fig. 3

which the subscripts i =1, 1 <<f<CN <4 1 correspond to the calculation points on the SW (z,; =
Zyjq -+ Az, ¥y; = fl215), y = f(z) - is the SW equation).

We denote the unknown flow parameters and their first derivatives at the working points
by Vxijs Vyiss Piss Piss (005/02);5 ... (3p/0Y)s;. The derivatives of those parameters with respect to the
SD.J dir?ction are calculated from (9gn/00)i; = (Bmizs1— Emis)/ Bis, Ry = VA$§+(yi5+1—,yi;')2, and the
direction cosines from cos (I, 2);; = Azy/Ry;, cos (I, )iy = (Yijsa — Yi)Ris. -

At the first step (for i = 1), we derive the unknown first derivatives of the flow
parameters at the SW from the algebraic equations. The second derivatives are calculated by
differentiating each equation in (1)-(3) with respect to x and y. Then one obtains a system
of 16 linear algebraic equations in the 12 unknown second derivatives (§%,/0x%, 8%,./0zdy ... P pldy®)
and four unknown first derivatives of the direction cosines: 4§ cos (I, z)/dz, 8 cos (I, z)/dy, 8 cos (I, -
y)/0z, 6 cos (I, y)/dy. ~ The first derivatives of the flow parameters are taken in this system
from the solution to the system in terms of the first derivatives.

In that way, one can calculate derivatives of any order, and then Taylor’s formula

ag g
Emit1j = Emij + (-5;—") Azij + au. + (——,?) Ay ()
4 " /i
is used to derive the unknown flow parameters in the second step behind the SW i + 1 = 2(1 =<
j = N). One similarly calculates the flow parameters at the next step (i + 1 = 3, 1 < j=<N

= 1) from the known ones on the line i = 2 and so on up to i = N, j=1(Fig. 1).

The stream lines are taken as rectilinear at each step within the flow behind the SW (i
> 1) and are aligned to the velocity vector at the previous step. The increments 4%,y and
Ay;; in (4) along the x and y axes correspondingly are taken in order to ensure a stable
solution such that the characteristic in the first family with respect to the velocity vy,
emerging from point i + 1j passes through the point ij + 1 (Fig. 1).

The coordinates at point ij are denoted by x, and ¥;, and those at ij + 1 by x; and y,,
and those at i + 1j by x; and y;. The direction cosines for the straight line joining points
3 and 1 are |, = (z3 — z,)/E;, my = (ys — y)/E;, Ey = l{z5 — z,)* + (ys — 1,)?1°5, and those for points 2
and 3 are [, = (23 — z3)/E,, my = (Y — Yp)/Ey, Ey = l(z, — 25)* + (y, — ¥:)21*%  and then the stability
condition can be written as
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Ll; + mym, = cos py;
>

3 2 » 2 0.5
(Slﬂuij=a*ii/viij, Ayij = Vpu'/pﬁ, Uij=[vxiy'+vyij] ).

The obvious relations &; ;5 = ;5 + AZij,. Yi + 17 = Yii + AVis, AYij == Uyi3/U.3A2;; have been used in
solving the system by iteration on Ax,;.

Figure 2 shows the body: 1 shock wave, 2 stream line, 3 leading edge, 4 carrying body.

Results. A computer program was written and bodies were constructed having parabolic
shock waves, equation x = aoy2 (wing II), and the aerodynamic characteristics were calcu-
lated. These were compared for identical values for the volume W, length b, and angle 7.
Friction forces were neglected in calculating the frontal resistance, while the bottom pres-
sure was taken as approximately equal to that in the unperturbed flow.

The calculations were performed with N = 70 up to second-order derivatives. For that N,
the flow parameters calculated up to the first derivatives differed from the analogous ones
calculated up to the second by less than 2.5%. Calculations on the same parameters with N =
40 differed from the latter (N = 70) by less than 3%, while those with N = 25 differed from
those with N = 40 by 8%. We also calculated the entropy and total enthalpy behind the para-
bolic shock waves. The relative errors in these parameters along the various stream lines
were hundredths of a percent.

Figure 3 shows the body sections (wings II) with taper angles (angles between the upper
surfaces) y = 90° with a symmetry plane (a) and with planes x = X, + 0.5b and x = x; + b
(bottom section) (b), where x, is the coordinate along the x axis for the point at which the
SW is attached to the leading edge. The longitudinal section is slightly convex on the
incident side, while the transverse section is slightly wavy.

Figure 4 shows how the lift coefficient c,, aerodynamic quality factor K, and volume W
(for wings I and II) vary with a,, which characterizes the shape of a parabolic shock wave
for various x, [M = 4; 1) x5, = 0.7; 2) 0.85; 3) 1]. As a; increases, the 1lift coefficient
and the volume decrease, while the aerodynamic quality factor improves because the inclina-
tion of the shock wave and the body thickness decrease as a, increases. As X, increases, the
¢y = cy(ao), W = W(a,) curves fall, while the aerodynamic quality factor improves, since a
parabolic shock wave shows decreased inclination as X, increases.

Calculations were also performed on the analogous characteristics as functions of x,
[Fig. 5: ap = 0.8; 1) M = 3;2) 4; 3) 5], which showed that the wings II had aerodynamic
quality better than I throughout the range in x;. As M increased, so did the lift coeffi-
cient and volume, while the aerodynamic quality factor fell, since a given SW shape caused
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the thickness to increase with M. One obtains a distinct shape for each of the various M,
ay, and %X,. The calculations also showed that the volume increases with 7y, while the lift
factor for the II wings and the aerodynamic quality factor remain virtually unchanged.
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